Bore1 measurable selections of Paretian utility functions

نویسندگان

  • Steve Jackson
  • Daniel Mauldin
چکیده

We show that there is a Bore1 measurable selection of Paretian utilities in ‘markets with a continuum of traders’. Theorem: Let T and X be Polish spaces, R a Bore1 subset of T x X xX, and B={(t,x): (t,x,x)ER}. Suppose that for each t, R,={(x,y): (t,x,y)ER} is a preference order on B, = {x: (t,x) EB). Then there is a Bore1 measurable function f: B-$0, l] such that for all t E IT; f,: B,+[O, I] is a Paretian utility or continuous representation of R,. This improves earlier results showing that there are universally measurable f.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-Sided Approximation of Functions

where :Yl denotes the orthogonal complement of Y (see [I]). Another example of this type of duality appears in one of the classical moment problems. Letfbe Bore1 measurable and bounded on [a,b], h,, . . ., h, a CebySev system on [a,b] and for a given positive Bore1 measure yO defined on [a,b] denote by C (y,,) the class of all positive Bore1 measures y which satisfy f.bhkdy=[hkdyo k= 1,2 ,..., ...

متن کامل

Multilayer feedforward networks are universal approximators

This paper rigorously establishes thut standard rnultiluyer feedforward networks with as f&v us one hidden layer using arbitrary squashing functions ure capable of upproximating uny Bore1 measurable function from one finite dimensional space to another to any desired degree of uccuracy, provided sujficirntly muny hidden units are available. In this sense, multilayer feedforward networks are u c...

متن کامل

Generalized Rings of Measurable and Continuous Functions

This paper is an attempt to generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.

متن کامل

When is the ring of real measurable functions a hereditary ring?

‎Let $M(X‎, ‎mathcal{A}‎, ‎mu)$ be the ring of real-valued measurable functions‎ ‎on a measure space $(X‎, ‎mathcal{A}‎, ‎mu)$‎. ‎In this paper‎, ‎we characterize the maximal ideals in the rings of real measurable functions‎ ‎and as a consequence‎, ‎we determine when $M(X‎, ‎mathcal{A}‎, ‎mu)$ is a hereditary ring.

متن کامل

Ordering infinite utility streams

We reconsider the problem of ordering infinite utility streams. As has been established in earlier contributions, if no representability condition is imposed, there exist strongly Paretian and finitely anonymous orderings of intertemporal utility streams.We examine the possibility of adding suitably formulated versions of classical equity conditions. First, we provide a characterization of all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993